Latest on Linear Sketches for Large Graphs: Lots of Problems, Little Space, and Loads of Handwaving

Andrew McGregor

University of Massachusetts

Latest on Linear Sketches for Large Graphs: Lots of Problems, Little Space, and Loads of Handwaving

Andrew McGregor

University of Massachusetts

Vertex Connectivity and Sparsification Guha, McGregor, Tench [PODS 2015]
 Densest Subgraphs McGregor, Tench, Vorotnikova, Vu [MFCS 2015]
 Matching, Vertex Cover, Hitting Set
 Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]

<u>Motivation</u>: Dynamic Graph Streams. Want to analyze a massive graph defined by a long sequence of edge insertions and deletions. Don't want to have to store the entire graph.

Motivation: Dynamic Graph Streams. Want to analyze a massive graph defined by a long sequence of edge insertions and deletions. Don't want to have to store the entire graph.

Main Technique: Linear Sketches. Maintain a random linear projections of vectors and matrices representing the graph.

<u>Motivation</u>: Dynamic Graph Streams. Want to analyze a massive graph defined by a long sequence of edge insertions and deletions. Don't want to have to store the entire graph.

Main Technique: Linear Sketches. Maintain a random linear projections of vectors and matrices representing the graph.

What's Known: Lots and lots! Edge and vertex connectivity, spectral sparsification, matching, vertex cover, hitting set, correlation clustering, triangles, spanners, densest subgraph... <u>Motivation</u>: Dynamic Graph Streams. Want to analyze a massive graph defined by a long sequence of edge insertions and deletions. Don't want to have to store the entire graph.

Main Technique: Linear Sketches. Maintain a random linear projections of vectors and matrices representing the graph.

What's Known: Lots and lots! Edge and vertex connectivity, spectral sparsification, matching, vertex cover, hitting set, correlation clustering, triangles, spanners, densest subgraph...

Graph Streaming Survey McGregor [SIGMOD Record 2014] <u>Lo Sampling Primitive</u> There's a distribution over matrices $M \in \Re^{\text{polylog}(N) \times N}$ such that for any $x \in \Re^N$, a random non-zero element of x can be reconstructed from Mx whp.

Jowhari, Saglam, Tardos [PODS 2011]

<u>Lo Sampling Primitive</u> There's a distribution over matrices $M \in \Re^{\text{polylog}(N) \times N}$ such that for any $x \in \Re^N$, a random non-zero element of x can be reconstructed from Mx whp.

Jowhari, Saglam, Tardos [PODS 2011]

<u>Corollary</u> Can sample a uniform edge from a graph in the dynamic graph stream model using O(polylog n) bits of space.

• Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- <u>Previous Result</u> 2+ ϵ approximations using $\tilde{O}(\epsilon^{-2} n)$ space.

Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- <u>Previous Result</u> 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- <u>Previous Result</u> 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

Sample of t=O(n log n) edges using L₀ sampling. Let \check{D}_S be density among sampled edge scaled by m/t. Return max_S \check{D}_S

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- Previous Result 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

Sample of t=O(n log n) edges using L₀ sampling. Let \check{D}_S be density among sampled edge scaled by m/t. Return max_S \check{D}_S

• <u>Analysis</u> With probability I-n^{-2k} for any subset S of size k,

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- Previous Result 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

Sample of t=O(n log n) edges using L₀ sampling. Let \check{D}_S be density among sampled edge scaled by m/t. Return max_S \check{D}_S

• <u>Analysis</u> With probability I-n^{-2k} for any subset S of size k, $\check{D}_S \approx_{\epsilon} D_S$ if $D_S \approx D^*$ and $\check{D}_S \ll D^*$ if $D_S \ll D^*$

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- Previous Result 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

Sample of t=O(n log n) edges using L₀ sampling. Let \check{D}_S be density among sampled edge scaled by m/t. Return max_S \check{D}_S

• <u>Analysis</u> With probability I-n^{-2k} for any subset S of size k, $\check{D}_S \approx_{\epsilon} D_S$ if $D_S \approx D^*$ and $\check{D}_S \ll D^*$ if $D_S \ll D^*$

Use union bound over $O(n^k)$ subsets of size k for each k.

- Density of node set S is $D_S = |E_S|/|S|$. Estimate $D^* = \max_S D_S$.
- Previous Result 2+ε approximations using Õ(ε⁻² n) space.
 Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]
- Our Result Single pass $(I + \varepsilon)$ -approx. using $\tilde{O}(\varepsilon^{-2} n)$ space:

Sample of t=O(n log n) edges using L₀ sampling. Let \check{D}_S be density among sampled edge scaled by m/t. Return max_S \check{D}_S

• <u>Analysis</u> With probability I-n^{-2k} for any subset S of size k, $\check{D}_S \approx_{\epsilon} D_S$ if $D_S \approx D^*$ and $\check{D}_S \ll D^*$ if $D_S \ll D^*$

Use union bound over $O(n^k)$ subsets of size k for each k.

see also Mitzenmacher et al. [KDD 2015], Esfandiari et al. [ArXiv 2015]

What other types of sampling are there that a) are useful for solving graph problems and b) can be supported on dynamic graph streams?

I. Graph Matching via SNAPE Sampling

II. Graph Connectivity via **DEALS** Sampling

Graph Matchings

- <u>Ist Result</u> If max matching has size $\leq k$, can find optimal matching in dynamic stream model using $\tilde{O}(k^2)$ space.
 - Optimal & Simple. Extends to hypergraph matching, vertex cover, hitting set... but gets a lot more complicated.
 - Basic Idea: "SNAPE" sampling primitive.

Graph Matchings

- <u>Ist Result</u> If max matching has size $\leq k$, can find optimal matching in dynamic stream model using $\tilde{O}(k^2)$ space.
 - Optimal & Simple. Extends to hypergraph matching, vertex cover, hitting set... but gets a lot more complicated.
 - **Basic Idea:** "SNAPE" sampling primitive.
- <u>2nd Result</u> If max matching has size $\geq k$, can find matching of size $\Omega(k/t)$ in the dynamic stream model using $\tilde{O}(k^2/t^3)$ space.
 - Application: Guessing k gives O(t)-approx for max matching using $\tilde{O}(n^2/t^3)$ space. This is also optimal; see Sanjeev's talk.

• SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest

• SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest

• SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest

- SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest
- **RETURN** a random edge amongst those that remain. If no edges remain, return NULL.

SNAPE Sampling Sample-Nodes-And-Pick-Edge

- SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest
- **RETURN** a random edge amongst those that remain. If no edges remain, return NULL.

- SAMPLE each node with prob. $\Theta(1/k)$ and DELETE the rest
- **RETURN** a random edge amongst those that remain. If no edges remain, return NULL.
- <u>Theorem</u> If G has max matching size $\leq k$ then O(k² log k) SNAPE samples will include a max matching from G.

- <u>Lemma</u> Let G' contains a max matching of G if:
 - o G' includes all shallow edges in G.
 - Every heavy node in G has degree at least 5k in G'.

- <u>Lemma</u> Let G' contains a max matching of G if:
 - o G' includes all shallow edges in G.
 - Every heavy node in G has degree at least 5k in G'.

- <u>Lemma</u> Let G' contains a max matching of G if:
 - o G' includes all shallow edges in G.
 - o Every heavy node in G has degree at least 5k in G'.
- <u>Proof</u> Each missing edge is incident to some heavy node but you still have plenty of other edges on that node.

• Let G have max matching of size $\leq k$. Say node is heavy if degree is $\geq 10k$ and edge is shallow if both endpoints aren't heavy.

• <u>Lemma</u> Let G' contains a max matching of G if:

o G' includes all shallow edges in G.

• Every heavy node in G has degree at least 5k in G'.

- <u>Proof</u> Each missing edge is incident to some heavy node but you still have plenty of other edges on that node.
- <u>Useful Fact</u> G has a vertex cover W of size at most 2k.

Small Matching Analysis: Shallow Edges

Small Matching Analysis: Shallow Edges

• If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.

Small Matching Analysis: Shallow Edges

• If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.

• If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.

• If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.

- If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.
- Hence, if uv is shallow:

 $\Pr[uv \text{ is only remaining edge}] \geq p^2(1-p)^{|\Gamma(u)|+|\Gamma(v)|+|W|} = \Omega(k^{-2})$

- If we delete nodes (other than u and v) in hitting set W and neighbors of u, v leaves exactly the edge uv if u and v sampled.
- Hence, if uv is shallow:

 $\Pr[uv \text{ is only remaining edge}] \geq p^2(1-p)^{|\Gamma(u)|+|\Gamma(v)|+|W|} = \Omega(k^{-2})$

• After O(k² log k) repetitions, have sampled edge uv whp.

• For heavy u, deleting $W \setminus \{u\}$ leaves star on u with $\geq 8k$ leaves.

• For heavy u, deleting $W \setminus \{u\}$ leaves star on u with $\geq 8k$ leaves.

- For heavy u, deleting $W \setminus \{u\}$ leaves star on u with $\geq 8k$ leaves.
- Hence,

Pr[edge incident to u is sampled] $\geq p(1-p)^{|W|} = \Omega(k^{-1})$

- For heavy u, deleting $W \setminus \{u\}$ leaves star on u with $\geq 8k$ leaves.
- Hence,

 $\Pr[\text{edge incident to u is sampled}] \ge p(1-p)^{|W|} = \Omega(k^{-1})$

• After O(k² log k) repetitions, have sampled 5k edges on u.

• <u>Theorem</u> If G has matching $\geq k$ then O(k/t³) SNAPE samples with p= $\Theta(t/k)$ has matching of size $\Omega(k/t)$ with high probability.

- <u>Theorem</u> If G has matching $\geq k$ then O(k/t³) SNAPE samples with p= $\Theta(t/k)$ has matching of size $\Omega(k/t)$ with high probability.
- <u>Proof</u>
 - Let e₁, e₂, e₃, e₄,... be sequence of SNAPE samples and consider constructing greedy matching M.

• <u>Theorem</u> If G has matching $\geq k$ then O(k/t³) SNAPE samples with p= $\Theta(t/k)$ has matching of size $\Omega(k/t)$ with high probability.

• <u>Proof</u>

- Let e₁, e₂, e₃, e₄,... be sequence of SNAPE samples and consider constructing greedy matching M.
- Assuming |M|=o(k/t) then

 $\Pr[e_i \text{ added to } M] \approx \Pr[e_i \text{ isn't a NULL}] \cdot \Pr[\text{all endpoints in } M \text{ are deleted}]$ = $\Omega(kp^2) \cdot (1-p)^{o(k/t)} = \Omega(t^2/k)$

• <u>Theorem</u> If G has matching $\geq k$ then O(k/t³) SNAPE samples with p= $\Theta(t/k)$ has matching of size $\Omega(k/t)$ with high probability.

• <u>Proof</u>

- Let e₁, e₂, e₃, e₄,... be sequence of SNAPE samples and consider constructing greedy matching M.
- Assuming |M|=o(k/t) then

 $\Pr[e_i \text{ added to } M] \approx \Pr[e_i \text{ isn't a NULL}] \cdot \Pr[\text{all endpoints in } M \text{ are deleted}]$ = $\Omega(kp^2) \cdot (1-p)^{o(k/t)} = \Omega(t^2/k)$

• After O(k/t²) SNAPE samples we have $|M| = \Omega(k/t)$

I. Graph Matching via SNAPE Sampling

II. Graph Connectivity via **DEALS** Sampling

- <u>Ist Result</u> Test if graph is k-edge-connected in $\tilde{O}(kn)$ space.
 - Basic Idea: "DEALS" sampling primitive.

- <u>Ist Result</u> Test if graph is k-edge-connected in $\tilde{O}(kn)$ space.
 - Basic Idea: "DEALS" sampling primitive.
- <u>2nd Result</u> Distinguish node connectivity $\leq k$ from $\geq (1+\epsilon)k$ using $\tilde{O}(\epsilon^{-1}kn)$ space.
 - Basic Idea: Combine node sampling and DEALS sampling.
 - Open: Testing exactly exact node connectivity?

- <u>Ist Result</u> Test if graph is k-edge-connected in $\tilde{O}(kn)$ space.
 - Basic Idea: "DEALS" sampling primitive.
- <u>2nd Result</u> Distinguish node connectivity $\leq k$ from $\geq (1+\epsilon)k$ using $\tilde{O}(\epsilon^{-1}kn)$ space.
 - Basic Idea: Combine node sampling and DEALS sampling.
 - Open: Testing exactly exact node connectivity?
- <u>**3rd Result</u> (I+\epsilon)-approx every cut using \tilde{O}(\epsilon^{-2}n) space.</u>**
 - Basic Idea: Combine edge sampling and DEALS sampling.
 - Hypergraph Sparsifiers: Extends Kogan, Krauthgamer [ITCS 2015]

DEALS Sampling Direct-Edges-Add-Lo-Sketches

 <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.

- <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut $(S,V\setminus S)$ where cut is specified at end of the stream. May use $\tilde{O}(n)$ space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut (S,V\S) where cut is specified at end of the stream. May use Õ(n) space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Problem</u> Sample edge across cut $(S,V\setminus S)$ where cut is specified at end of the stream. May use $\tilde{O}(n)$ space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

• <u>Lemma</u> Non-zero entries of $\sum_{i \in S} a_i = edges across (S,V\S) and$ $hence, <math>\sum_{i \in S} Ma_i = M(\sum_{i \in S} a_i)$ yields random edge across (S,V\S).

- <u>Problem</u> Sample edge across cut $(S,V\setminus S)$ where cut is specified at end of the stream. May use $\tilde{O}(n)$ space.
- <u>Algorithm</u> Construct Ma₁, Ma₂, ..., Ma_n where M is L₀-sampling sketch and a_i encodes neighborhood of node i.

- <u>Lemma</u> Non-zero entries of $\sum_{i \in S} a_i = edges across (S,V\S) and hence, <math>\sum_{i \in S} Ma_i = M(\sum_{i \in S} a_i)$ yields random edge across (S,V\S).
- <u>Application</u> Find spanning trees and edges in light cuts.

 <u>Simplified Result</u> Can answer queries of form "are u and v connected after removal of set of k nodes S" using Õ(kn) space.

- <u>Simplified Result</u> Can answer queries of form "are u and v connected after removal of set of k nodes S" using Õ(kn) space.
- <u>Algorithm</u>
 - Sample some edges and answer "no" iff there's no S-avoiding path between u and v amongst sampled edges.

- <u>Simplified Result</u> Can answer queries of form "are u and v connected after removal of set of k nodes S" using Õ(kn) space.
- <u>Algorithm</u>
 - Sample some edges and answer "no" iff there's no S-avoiding path between u and v amongst sampled edges.
 - How to sample: Pick each node with probability I/k and find spanning forest on these nodes. Repeat Õ(k²) times.

- <u>Simplified Result</u> Can answer queries of form "are u and v connected after removal of set of k nodes S" using Õ(kn) space.
- <u>Algorithm</u>
 - Sample some edges and answer "no" iff there's no S-avoiding path between u and v amongst sampled edges.
 - How to sample: Pick each node with probability I/k and find spanning forest on these nodes. Repeat Õ(k²) times.
- <u>Analysis</u> Let $u-x_1-x_2-\ldots-x_t-v$ be S-avoiding path in input graph.

- <u>Simplified Result</u> Can answer queries of form "are u and v connected after removal of set of k nodes S" using Õ(kn) space.
- <u>Algorithm</u>
 - Sample some edges and answer "no" iff there's no S-avoiding path between u and v amongst sampled edges.
 - How to sample: Pick each node with probability I/k and find spanning forest on these nodes. Repeat Õ(k²) times.
- <u>Analysis</u> Let $u-x_1-x_2-\ldots-x_t-v$ be S-avoiding path in input graph.
 - Spanning forest on sampled nodes contains an S-avoiding path between x_i and x_{i+1} with prob. p²(1-p)^k≈k⁻². After Õ(k²) repeats we have S-avoiding path in E' with high probability.

Application to Cut Sparsification...

• <u>Result</u> Can (I+ ϵ) approximate all cuts using O(ϵ^{-2} n) space.

Application to Cut Sparsification...

- <u>Result</u> Can (1+ ε) approximate all cuts using O(ε^{-2} n) space.
- <u>Basic Idea</u>
 - Sampling edges with probability $\geq (c\epsilon^{-2} \log n)/\lambda_e$ preserves all cut sizes where λ_e is the edge connectivity. Fung et al. [STOC 2011]
Application to Cut Sparsification...

- <u>Result</u> Can (1+ ε) approximate all cuts using O(ε^{-2} n) space.
- <u>Basic Idea</u>
 - Sampling edges with probability $\geq (c\epsilon^{-2} \log n)/\lambda_e$ preserves all cut sizes where λ_e is the edge connectivity. Fung et al. [STOC 2011]
 - Use DEALS sampling to pick all edges with $\lambda_e \leq 2c\epsilon^{-2} \log n$ and sample each remaining edge with probably 1/2.

Application to Cut Sparsification...

- <u>Result</u> Can (I+ ε) approximate all cuts using O(ε^{-2} n) space.
- <u>Basic Idea</u>
 - Sampling edges with probability $\geq (c\epsilon^{-2} \log n)/\lambda_e$ preserves all cut sizes where λ_e is the edge connectivity. Fung et al. [STOC 2011]
 - Use DEALS sampling to pick all edges with $\lambda_e \leq 2c\epsilon^{-2} \log n$ and sample each remaining edge with probably 1/2.
 - Recurse O(log n) times in parallel until we have sparse graph.

Thanks!

Graph Streaming SurveyMcGregor [SIGMOD Record 2014]Vertex Connectivity and Sparsification.Guha, McGregor, Tench [PODS 2015]Densest Subgraphs.McGregor, Tench, Vorotnikova, Vu [MFCS 2015]Matching, Vertex Cover, Hitting Set.Chitnic Cormodo, Esfandiari, Hajiaghavi, McGregor, Menemizedeh, Veretnikova [TRA 2016]

Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]

Thanks!

Graph Streaming SurveyMcGregor [SIGMOD Record 2014]Vertex Connectivity and Sparsification.Guha, McGregor, Tench [PODS 2015]Densest Subgraphs.McGregor, Tench, Vorotnikova, Vu [MFCS 2015]Matching, Vertex Cover, Hitting Set.Chitnic Cormodo, Esfandiari, Hajiaghavi, McGregor, Menemizedeh, Veretnikova [TRA 2016]

Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]